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Abstract - The title compounds 2 and 3 were synthesized in good yield from shikimic acid 1, and are of
mechanistic and synthetic interest as a prospective shikimate pathway inhibitors,

The shikimic acid biosynthetic pathway figures prominently in the metabolic chemistry of plants and
microorganisms.l.2 Besides leading to the aromatic amino acids phenylalanine, tyrosine and tryptophan, the
pathway also produces such essential cofactors as folic acid and the isoprenoid quinones. Shikimic acid itself 1
has been a popular target for synthesis.3 However structural variants, 4.5 analogs67 and stercoisomers8 are of
particular contemporary interest as enzyme inhibitors and metabolic regulators with potentially valuable herbicidal
and antibiotic activity. Described herein are short, highly stereoselective syntheses of (-)-3-homoshikimic acid 2,
and (-)-3-homoshikimate-3-phosphate 3. These structures were designed for use as mechanistic probes and
potential inhibitors of the enzymes shikimate kinase and enolpyruvylshikimate phosphate synthase, which

catalyze reactions on the main biosynthetic pathway to the key branchpoint metabolite (-)-chorismic acid 4.
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3-Dehydroshikimic acid, which can be prepared by an improved oxidation? of (-)-1 or by fermenta-
tion, 10 was esterified (CHaN2, methanol-ether, -20°C) to afford ketoester 5 (Scheme) in 65% overall yield.
After silylation of the diol grouping in § (2.4 equiv TBDMSCI, imidazole, DMF, 1t, 6 h), methylenation was
accomplished by the addition of 1.2 equiv Ph3P=CH; to ketoether 6 (THF, reflux)!1 thus affording diene 7
(70% overall from 5). Deprotection (4 equiv BuyNF, THF, 0°C, 3 h) furnished enediol 8 in 80% yield.12
Stereoselective epoxidation of 8 using m-chloroperoxybenzoic acid (1.3 equiv peracid, NagHPO4, CH2Cla,
reflux, 19 h) gave syn-epoxyol 9 in ca. 80% yield.13 It should be noted that all attempts to generate 9 directly
by reaction of (CH3)2S=CH; with ketoether 6 gave a complex mixture apparently resulting from nucleophilic
attack at both carbony! groups of 6.

Reduction of the exocyclic epoxide in 9 with NaBH3CN in the presence of BF3-etherate (5°C, 30 min,
50% yield).14 proceeded with the expected inversion of configuration at the tertiary center to afford methyl 3-
homoshikimate 10. Saponification of 10 (0°C, H,0) afforded 2 in 87% yield having [o]p25 = -800.15 The
assigned regio and stereochemistry of reductive epoxide opening was supported by the NMR spectrum of 2
(J3,4 = 4.9 Hz) and also by the significant nuclear Overhauser enhancement (10%) observed at H3 of 2 upon
irradiation of H4.

No reaction occurred when phosphorylation of 10 was attempted with tetrabenzylpyrophosphate, but
with dimethylchlorophosphate (1.1 equiv in pyridine, 0°C, 1 h) triester 11 was generated in 35% yield. De-
protection of the phosphate (TMSBr, CH2Cly, 0°C, 1h) and carboxylate groups (3.3 equiv NaOH, H0, 0°C,
4 h) in 11 furnished (-)-homoshikimate-3-phosphate 3 which was obtained pure after anion exchange chroma-
tography (DEAE-Sephadex A-25, HCO3- form, gradient elution with 0-0.5 M NH4CO3) in 67% yield.16

This stereoselective homologation of shikimic acid should provide access to a variety of potential
inhibitors at intermediate and late stages of the aromatic biosynthetic pathway. The biological activity of such

structures is currently under investigation.
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For 6: R¢ 0.34 (9:1 hexane:EtOAc); [a]p -56° (c= 6.3, CH2Clp); 'H-NMR (CDCl3) 6.68 (br. 5, 1
H), 4.06 (m, 1 H), 3.88 (d, 1 H, J= 6.9 Hz), 3.80 (s, 3 H), 2.89 (dq, 1 H, J= 18.7, 1.8 Hz), 2.55
(ddd, 1 H, J= 18.7, 5.3, 1.6 Hz), 0.85 (s, 9 H), 0.81 (s, 9 H), 0.06 (s, 3 H), 0.04 (s, 9 H); 13C-
NMR (CDCl3) 197.5, 166.7, 143.6, 131.2, 71.6, 52.5, 31.7, 25.8, 18.3, 18.0, -4.6, -4.8, -4.9;
Ill(l)égl)m) 2950, 2925, 2900, 2875, 1725, 1700, 1250, 1150, 825 cm-1; CIMS m/z 415 (M+1,

For 8: m.p. 112-113°C; R¢ 0,46 (EtOAc); [alp -197° (c= 2.16, EtOAc); 'H-NMR (ds-acetone) 7.13
(d, 1 H, J= 2.1 Hz), 5.59 (s, 1 H), 5.39 (s, 1 H), 4.05 (dt, 1 H, J= 9.1, 2.0 Hz), 3.71 (s, 3 H),
3.63 (dt, 1 H, J=9.1, 5.3 Hz), 2.80 (dd, 1 H, J= 17.7, 5.3 Hz), 2.27 (ddd, 1 H, J]= 17.7, 9.1, 2.3
Hz); 13C-NMR (dg-acetone) 167.6, 145.8, 137.2, 128.6, 118.9, 74.5, 71.6, 51.9, 32.9; IR (film)
3300, 2975, 170S, 1450, 1275, 1100, 1075 cm-1; CIMS (my/z 185 (M+1, 100%).

For 9: R¢ 0.32 (EtOAc); [alp -90° (c= 0.61, acetone); IH-NMR (dg-acetone) 6.29 (t, 1 H, J= 1.7
Hz), 3.95 (m, 1 H), 3.71 (s, 3 H), 3.61 (d, 1 H, J=7.4 Hz), 3.09 (d, 1 H, J= 5.4 Hz), 2.92 (d, 1
H, J= 5.4 Hz), 2.78 (ddd, 1 H, J= 18.0, 4.6, 1.7 Hz), 2.34 (ddd, 1 H, J= 18.0, 6.0, 1.7 Hz); 13C-
NMR (ds-acetone) 166.9, 137.7, 134.7, 72.5, 70.3, 57.8, 53.0, 52.1, 31.7; IR (film) 3450, 2975,
1725, 1650, 1440, 1200, 1100, 1075 cm1; CIMS m/z 201 (M+1, 88%), 183 (M+1-H0, 100%).

Hutchins, R. O.; Taffer, I. M.; Burgoyne, W, J. Org. Chem. 1981, 46, 5214.

For 2: [a]p -80° (c= 1.2, H20); 'H-NMR (D20) 6.74 (br. 5, 1 H), 4.01 (m, 1 H), 3.90 (¢, 1 H, J=
4.9 Hz), 3.70, 3.65 (AB quartet, 2 H, J= 10.9, 7.1 Hz), 2.63 (br. s, 1 H), 2.49 (br.d, 1 H, J= 19
Hz), 2.22 (br. d, 1 H, J= 19 Hz); 13C-NMR (D20) 170.8, 138.4, 127.7, 67.5, 66.9, 60.9, 39.3,
28.3; IR (KBr) 3300, 2900, 1700, 1650, 1425, 1250, 1050 cml; CIMS my/z 189 (M+1, 6%), 171
(M+1-H0, 46%), M+1-H>0, 100%).

For 3: [a]p -12° (c= 0.57, H20); TH-NMR (D70) 6.64 (br. s, 1 H), 4.01 (m, 1 H), 3.85-3.93 (m,
3 H), 2.46 (br. s, 1 H), 2.40 (br. d, 1 H, J='18 Hz), 2.19 (br. d, 1 H, J= 18 Hz); 13C-NMR (D;0)
176.7, 140.1, 134.0, 71.6, 71.3, 68.7, (d, Jc,p = 5.3 Hz), 42.6 (d, Ic p= 4.1 Hz), 33.1; IR (KBr)
3065, 1660, 1550, 1467, 1157, 1045, 970 cm!; CIMS m/z 305 (diammonium salt, M+1, 5%), 287
(14%), 269 (15%), 171 (26%), 153 (100%).
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